ประกาศ!!!

บล็อกนี้เป็นส่วนหนึ่งของวิชา ว 32161 ดาราศาสตร์

อาจารย์ผู้สอน อาจารย์วิสูตร ยอดสุข


จัดทำโดย  นายวโรดม  ฮุ่นศิริ  ชั้น ม.5/4  เลขที่ 3

ปีการศึกษา 2555


โรงเรียนสมุทรปราการ

ดาวฤกษ์

ดาวฤกษ์


ย่านก่อตัวของดาวฤกษ์ในดาราจักรเมฆแมเจ
ลแลนใหญ่ ภาพจาก NASA/ESA
         ดาวฤกษ์ (อังกฤษ: star) คือวัตถุท้องฟ้าที่เป็นก้อนพลาสมาสว่างขนาดใหญ่ที่คงอยู่ได้ด้วยแรงโน้มถ่วง ดาวฤกษ์ที่อยู่ใกล้โลกมากที่สุด คือ ดวงอาทิตย์ ซึ่งเป็นแหล่งพลังงานหลัก ของโลก เราสามารถมองเห็นดาวฤกษ์อื่น ๆ ได้บนท้องฟ้ายามราตรี หากไม่มีแสงจากดวงอาทิตย์บดบัง ในประวัติศาสตร์ ดาวฤกษ์ที่โดดเด่นที่สุดบนทรงกลมท้องฟ้าจะถูกจัดเข้าด้วยกันเป็นกลุ่มดาว และดาวฤกษ์ที่สว่างที่สุดจะได้รับการตั้งชื่อโดยเฉพาะ นักดาราศาสตร์ได้จัดทำบัญชีรายชื่อดาวฤกษ์เพิ่มเติมขึ้นมากมาย เพื่อใช้เป็นมาตรฐานในการตั้งชื่อดาวฤกษ์
ตลอดอายุขัยส่วนใหญ่ของดาวฤกษ์ มันจะเปล่งแสงได้เนื่องจากปฏิกิริยาเทอร์โมนิวเคลียร์ฟิวชั่นที่แกนของดาว ซึ่งจะปลดปล่อยพลังงานจากภายในของดาว จากนั้นจึงแผ่รังสีออกไปสู่อวกาศ ธาตุเคมีเกือบทั้งหมดซึ่งเกิดขึ้นโดยธรรมชาติและหนักกว่าฮีเลียมมีกำเนิดมาจากดาวฤกษ์ทั้งสิ้น โดยอาจเกิดจากการสังเคราะห์นิวเคลียสของดาวฤกษ์ระหว่างที่ดาวยังมีชีวิตอยู่ หรือเกิดจากการสังเคราะห์นิวเคลียสของซูเปอร์โนวาหลังจากที่ดาวฤกษ์เกิดการระเบิดหลังสิ้นอายุขัย นักดาราศาสตร์สามารถระบุขนาดของมวล อายุ ส่วนประกอบทางเคมี และคุณสมบัติของดาวฤกษ์อีกหลายประการได้จากการสังเกตสเปกตรัม ความสว่าง และการเคลื่อนที่ในอวกาศ มวลรวมของดาวฤกษ์เป็นตัวกำหนดหลักในลำดับวิวัฒนาการและ ชะตากรรมในบั้นปลายของดาว ส่วนคุณสมบัติอื่นของดาวฤกษ์ เช่น เส้นผ่านศูนย์กลาง การหมุน การเคลื่อนที่ และอุณหภูมิ ถูกกำหนดจากประวัติวิวัฒนาการของมัน แผนภาพคู่ลำดับระหว่างอุณหภูมิกับความสว่างของดาวฤกษ์จำนวนมาก ที่รู้จักกันในชื่อ ไดอะแกรมของแฮร์ทสชปรุง-รัสเซลล์ (H-R ไดอะแกรม) ช่วยทำให้สามารถระบุอายุและรูปแบบวิวัฒนาการของดาวฤกษ์ได้
ดาวฤกษ์ถือกำเนิดขึ้นจากเมฆโมเลกุลที่ยุบตัวโดยมีไฮโดรเจนเป็น ส่วนประกอบหลัก รวมไปถึงฮีเลียม และธาตุอื่นที่หนักกว่าอีกจำนวนหนึ่ง เมื่อแก่นของดาวฤกษ์มีความหนาแน่นมากเพียงพอ ไฮโดรเจนบางส่วนจะถูกเปลี่ยนเป็นฮีเลียมผ่านกระบวนการนิวเคลียร์ฟิวชั่นอย่างต่อเนื่องส่วนภายในที่เหลือของดาวฤกษ์จะนำพลังงานออกจากแก่นผ่านทางกระบวนการแผ่รังสีและการพาความร้อนประกอบกัน ความดันภายในของดาวฤกษ์ป้องกันมิให้มันยุบตัวต่อไปจากแรงโน้มถ่วงของมันเอง เมื่อเชื้อเพลิงไฮโดรเจนที่แก่นของดาวหมด ดาวฤกษ์ที่มีมวลอย่างน้อย 0.4 เท่าของดวงอาทิตย์จะพองตัวออกจนกลายเป็นดาวยักษ์แดง ซึ่งในบางกรณี ดาวเหล่านี้จะหลอมธาตุที่หนักกว่าที่แก่นหรือในเปลือกรอบแก่นของดาว จากนั้น ดาวยักษ์แดงจะวิวัฒนาการไปสู่รูปแบบเสื่อม มีการรีไซเคิลบางส่วนของสสารไปสู่สสารระหว่างดาว สสารเหล่านี้จะก่อให้เกิดดาวฤกษ์รุ่นใหม่ซึ่งมีอัตราส่วนของธาตุหนักที่สูงก ว่า
ระบบดาวคู่และระบบดาวหลายดวงประกอบด้วยดาวฤกษ์สองดวงหรือมากกว่านั้นซึ่งยึดเหนี่ยวกันด้วยแรงโน้มถ่วง และส่วนใหญ่มักจะโคจรรอบกันในวงโคจรที่ เสถียร เมื่อดาวฤกษ์ในระบบดาวดังกล่าวสองดวงมีวงโคจรใกล้กันมากเกินไป ปฏิกิริยาแรงโน้มถ่วงระหว่างดาวฤกษ์อาจส่งผลกระทบใหญ่หลวงต่อวิวัฒนาการของ พวกมันได้ ดาวฤกษ์สามารถรวมตัวกันเป็นส่วนหนึ่งอยู่ในโครงสร้างขนาดใหญ่ที่ยึดเหนี่ยวกันด้วยแรงโน้มถ่วง เช่น กระจุกดาว หรือ ดาราจักร ได้

กำเนิดและวิวัฒนาการ

ดาวฤกษ์จะก่อตัวขึ้นภายในเขตขยายของมวลสารระหว่างดาวที่มีความหนาแน่นสูงกว่า ถึงแม้ว่าความหนาแน่นนี้จะยังคงต่ำกว่าห้องสุญญากาศบนโลกก็ตาม ในบริเวณนี้ซึ่งเรียกว่า เมฆโมเลกุล และประกอบด้วยไฮโดรเจนเป็นส่วนใหญ่ โดยมีฮีเลียมราวร้อยละ 23-28 และธาตุที่หนักกว่าอีกจำนวนหนึ่ง ตัวอย่างหนึ่งของบริเวณที่มีการก่อตัวของดาวฤกษ์อยู่ในเนบิวลานายพราน และเมื่อดาวฤกษ์ขนาดใหญ่ก่อตั้งขึ้นจากเมฆโมเลกุล ดาวฤกษ์เหล่านี้ก็ได้ให้ความสว่างแก่เมฆเหล่านี้ นอกจากนี้ยังเปลี่ยนไฮโดรเจนให้กลายเป็นไอออน ทำให้เกิดบริเวณที่เรียกว่า บริเวณเอช 2

การก่อตัวของดาวฤกษ์ก่อนเกิด


จุดกำเนิดของดาวฤกษ์เกิดขึ้นจากแรงโน้มถ่วงที่ไม่เสถียรภายในเมฆโมเลกุล โดยมากมักเกิดจากคลื่นกระแทกจากซูเปอร์โนวา (การระเบิดขนาดใหญ่ของดาวฤกษ์) หรือจากการแตกสลายของดาราจักรสองแห่งที่ปะทะกัน (เช่นในดาราจักรชนิดดาวกระจาย) เมื่อย่านเมฆนั้นมีความหนาแน่นเพียงพอจนถึงขอบเขตความไม่เสถียรของฌ็อง มันจึงยุบตัวลงด้วยแรงโน้มถ่วงภายในของมันเอง
ภาพวาดการก่อตัวของดาวฤกษ์ในเมฆโมเลกุลตามจินตนาการของศิลปิน
ขณะที่เมฆโมเลกุลยุบตัวลง ฝุ่นและแก๊สหนาแน่นก็เข้ามาเกาะกลุ่มอยู่ด้วยกัน เรียกว่า กลุ่มเมฆบอก ยิ่งกลุ่มเมฆยุบตัวลง ความหนาแน่นภายในก็เพิ่มสูงขึ้นเรื่อย ๆ พลังงานจากแรงโน้มถ่วงถูกแปลงไปกลายเป็นความร้อนซึ่งทำให้อุณหภูมิสูงยิ่ง ขึ้น เมื่อเมฆดาวฤกษ์ก่อนเกิดนี้ดำเนินไปจนกระทั่งถึงสภาวะสมดุลของอุทกสถิต จึงเริ่มมีดาวฤกษ์ก่อนเกิดก่อตัวขึ้นที่ใจกลาง ดาวฤกษ์ก่อนแถบลำดับหลักมักจะมีแผ่นจานดาวเคราะห์ก่อนเกิดล้อมรอบอยู่ ช่วงเวลาของการแตกสลายด้วยแรงโน้มถ่วงนี้กินเวลาประมาณ 10-15 ล้านปี
ดาวฤกษ์ยุคแรกที่มีมวลน้อยกว่า 2 เท่าของมวลดวงอาทิตย์ จะเรียกว่าเป็นดาวประเภท T Tauri ส่วนพวกที่มีมวลมากกว่านั้นจะเรียกว่าเป็น ดาวเฮอร์บิก Ae/Be ดาวฤกษ์เกิดใหม่เหล่านี้จะแผ่ลำพลังงานของแก๊สออกมาตามแนวแกนการหมุน ซึ่งอาจช่วยลดโมเมนตัมเชิงมุมของดาวฤกษ์ที่กำลังยุบตัวลงและทำให้กลุ่มเมฆเรืองแสงเป็นหย่อม ๆ ซึ่งรู้จักกันในชื่อ วัตถุเฮอร์บิก-ฮาโร ลำแก๊สเหล่านี้ เมื่อประกอบกับการแผ่รังสีจากดาวฤกษ์ขนาดใหญ่ที่อยู่ใกล้เคียง อาจช่วยขับกลุ่มเมฆซึ่งปกคลุมอยู่รอบดาวฤกษ์ที่ดาวนั้นก่อตั้งอยู่ออกไป

แถบลำดับหลัก

ช่วงเวลากว่า 90% ของดาวฤกษ์จะใช้ไปในการเผาผลาญไฮโดรเจนเพื่อสร้างฮีเลียมด้วยปฏิกิริยาแรง ดันสูงและอุณหภูมิสูงที่บริเวณใกล้แกนกลาง เรียกดาวฤกษ์เหล่านี้ว่าเป็นดาวฤกษ์ที่อยู่ในแถบลำดับหลักหรือดาวแคระ นับแต่ช่วงอายุเป็น 0 ในแถบลำดับหลัก สัดส่วนฮีเลียมในแกนกลางดาวจะเพิ่มขึ้นเรื่อย ๆ ผลที่เกิดขึ้นตามมาเพื่อการรักษาอัตราการเกิดปฏิกิริยานิวเคลียร์ฟิวชั่นในแกนกลางคือ ดาวฤกษ์จะค่อย ๆ มีอุณหภูมิสูงขึ้นและความส่องสว่างเพิ่มขึ้นเรื่อย ๆ ตัวอย่างเช่น ดวงอาทิตย์มีค่าความส่องสว่างเพิ่มขึ้นนับจากเมื่อครั้งเข้าสู่แถบลำดับหลักครั้งแรกเมื่อ 4,600 ล้านปีก่อนราว 40%
ดาวฤกษ์ทุกดวงจะสร้างลมดาวฤกษ์ ซึ่งประกอบด้วยอนุภาคเล็ก ๆ ของแก๊สที่ไหลออกจากดาวฤกษ์ไปในห้วงอวกาศ โดยมากแล้วมวลที่สูญเสียไปจากลมดาวฤกษ์นี้ถือว่าน้อยมาก แต่ละปีดวงอาทิตย์จะสูญเสียมวลออกไปประมาณ 10-14 เท่ามวลดวงอาทิตย์ หรือคิดเป็นประมาณ 0.01% ของมวลทั้งหมดของมันตลอดช่วงอายุ แต่สำหรับดาวฤกษ์มวลมากอาจจะสูญเสียมวลไปราว 10−7 ถึง 10−5 เท่าของมวลดวงอาทิตย์ต่อปี ซึ่งค่อนข้างส่งผลกระทบต่อวิวัฒนาการของตัวมันเอง ดาวฤกษ์ที่มีมวลเริ่มต้นมากกว่า 50 เท่าของมวลดวงอาทิตย์อาจสูญเสียมวลออกไปราวครึ่งหนึ่งของมวลทั้งหมดตลอดช่วง เวลาที่อยู่ในแถบลำดับหลัก
ตัวอย่างแสดงตำแหน่งของดาวฤกษ์ต่างๆ บนไดอะแกรมของเฮิร์ตสปรัง-รัสเซลล์ ดวงอาทิตย์อยู่บริเวณเกือบกึ่งกลางของแถบ (ดูเพิ่มใน การจัดประเภทดาวฤกษ์)
ระยะเวลาที่ดาวฤกษ์จะอยู่บนแถบลำดับหลักขึ้นอยู่กับมวลเชื้อเพลิงตั้งต้น กับอัตราเผาผลาญเชื้อเพลิงของดาวฤกษ์นั้นๆ กล่าวอีกนัยหนึ่งคือมวลตั้งต้นและความส่องสว่างของดาวฤกษ์นั่นเอง สำหรับดวงอาทิตย์ ประมาณว่าจะอยู่บนแถบลำดับหลักประมาณ 1010 ปี ดาวฤกษ์ขนาดใหญ่จะเผาผลาญเชื้อเพลิงในอัตราเร็วมากและมีอายุสั้น ขณะที่ดาวฤกษ์ขนาดเล็ก (คือดาวแคระ) จะเผาผลาญเชื้อเพลิงในอัตราที่ช้ากว่าและสามารถอยู่บนแถบลำดับหลักได้นาน หลายหมื่นหรือหลายแสนล้านปี ซึ่งในบั้นปลายของอายุ มันจะค่อย ๆ หรี่จางลงเรื่อย ๆ อย่างไรก็ดี อายุของเอกภพที่ประมาณการไว้ในปัจจุบันอยู่ที่ 13,700 ล้านปี ดังนั้นจึงไม่อาจค้นพบดาวฤกษ์ดังที่กล่าวมานี้ได้
นอกเหนือจากมวล องค์ประกอบของธาตุหนักที่หนักกว่าฮีเลียมก็มีบทบาทสำคัญต่อวิวัฒนาการของดาว ฤกษ์เช่นกัน ในทางดาราศาสตร์ ธาตุที่หนักกว่าฮีเลียมจะเรียกว่าเป็น "โลหะ" และความเข้มข้นทางเคมีของธาตุเหล่านี้จะเรียกว่า ค่าความเป็นโลหะ ค่านี้มีอิทธิพลต่อช่วงเวลาที่ดาวฤกษ์เผาผลาญเชื้อเพลิง รวมถึงควบคุมการกำเนิดสนามแม่เหล็กของดาวฤกษ์ และมีผลต่อความเข้มของลมดาวฤกษ์ด้วย[ดาวฤกษ์ชนิดดารากร 2 ซึ่งมีอายุเก่าแก่กว่าจะมีค่าความเป็นโลหะน้อยกว่าดาวฤกษ์รุ่นใหม่ หรือดาวฤกษ์แบบดารากร 3 เนื่องมาจากองค์ประกอบที่มีอยู่ในเมฆโมเลกุลอันดาวฤกษ์ถือกำเนิดขึ้นมานั่น เอง ยิ่งเวลาผ่านไป เมฆเหล่านี้จะมีส่วนประกอบของธาตุหนักเข้มข้นขึ้นเรื่อยๆ เมื่อดาวฤกษ์เก่าแก่สิ้นอายุขับและส่งคืนสารประกอบภายในชั้นบรรยากาศของมัน กลับไปในอวกาศ

หลังแถบลำดับหลัก

เมื่อดาวฤกษ์ที่มีมวลอย่างน้อย 0.4 เท่าของมวลดวงอาทิตย์ หมดไฮโดรเจนในแกนกลาง พื้นผิวชั้นนอกของมันจะขยายตัวอย่างมากและดาวจะเย็นลง ซึ่งเป็นการก่อตั้งของดาวยักษ์แดง ยกตัวอย่างเช่น อีกภายใน 5 พันล้านปี เมื่อดวงอาทิตย์กลายเป็นดาวยักษ์แดง มันจะขยายตัวออกจนมีรัศมีสูงสุดราว 1 หน่วยดาราศาสตร์ (150,000,000 กม.) หรือคิดเป็นขนาด 2.5 เท่าของขนาดในปัจจุบัน และเมื่อดวงอาทิตย์กลายเป็นดาวยักษ์แดง มันจะสูญเสียมวลไปราว 30% ของมวลดวงอาทิตย์ในปัจจุบัน
ในดาวยักษ์แดงที่มีมวลมากถึง 2.25 เท่าของมวลดวงอาทิตย์ ปฏิกิริยาฟิวชั่นไฮโดรเจนจะยังคงดำเนินต่อไปในพื้นผิวเปลือกรอบแกนกลาง ในที่สุด แกนกลางจะบีบอัดจนกระทั่งเริ่มปฏิกิริยาฟิวชั่นฮีเลียม และดาวฤกษ์จะมีรัศมีหดตัวลงอย่างต่อเนื่องและมีอุณหภูมิพื้นผิวสูงขึ้น ในดาวฤกษ์ที่มีขนาดใหญ่กว่านี้ พื้นที่แกนกลางจะเปลี่ยนจากการฟิวชั่นไฮโดรเจนไปเป็นการฟิวชั่นฮีเลียมโดย ตรง
หลังจากดาวฤกษ์ได้ใช้ฮีเลียมที่แกนกลางจนหมด ปฏิกิริยาฟิวชั่นจะยังคงดำเนินต่อไปในเปลือกหุ้มแกนกลางซึ่งประกอบด้วย คาร์บอนและออกซิเจน ดาวฤกษ์นั้นก็จะยังคงดำเนินต่อไปในเส้นทางวิวัฒนาการคู่ขนานไปกับระยะดาว ยักษ์แดงในช่วงแรก แต่มีอุณหภูมิพื้นผิวสูงกว่ามาก

ดาวมวลมาก

ดาวบีเทลจุส เป็นดาวยักษ์ใหญ่แดง ซึ่งกำลังจะสิ้นอายุขัย
ระหว่างช่วงการเผาผลาญฮีเลียมของดาวฤกษ์เหล่านี้ ดาวมวลมากซึ่งมีมวลมากกว่า 9 เท่าของมวลดวงอาทิตย์จะพองตัวออกจนกระทั่งกลายเป็นดาวยักษ์ใหญ่แดง เมื่อเชื้อเพลิงที่แกนกลางของดาวยักษ์ใหญ่แดงหมด พวกมันจะยังคงฟิวชั่นธาตุที่หนักกว่าฮีเลียม
แกนกลางจะหดตัวลงต่อไปจนกระทั่งมีอุณหภูมิและความดันเพียงพอที่จะ ฟิวชั่นคาร์บอน กระบวนการดังกล่าวดำเนินต่อไป ต่อด้วยกระบวนการใช้นีออนเป็นเชื้อเพลิง ตามด้วยออกซิเจนและซิลิคอน เมื่ออายุขัยของดาวฤกษ์ใกล้จะสิ้นสุด ฟิวชั่นจะสามารถเกิดขึ้นไปพร้อม ๆ กับชั้นเปลือกหัวหอมจำนวนมากภายในดาวฤกษ์ เปลือกเหล่านี้จะฟิวชั่นธาตุที่แตกต่างกัน โดยเปลือกชั้นนอกสุดจะฟิวชั่นไฮโดรเจน ชั้นต่อไปฟิวชั่นฮีเลียม เป็นเช่นนี้ไปเรื่อย ๆ
ดาวฤกษ์เข้าสู่ระยะสุดท้ายของอายุขัยเมื่อมันเริ่มผลิตเหล็ก เนื่องจากนิวเคลียสของเหล็กมียึดเหนี่ยวระหว่างกันอย่างแน่นหนากว่า นิวเคลียสที่หนักกว่าใด ๆ ถ้าหากเหล็กถูกฟิวชั่นก็จะไม่ก่อให้เกิดการปลดปล่อยพลังงานแต่อย่างใด แต่ในทางกลับกัน กระบวนการดังกล่าวต้องใช้พลังงาน เช่นเดียวกัน นับตั้งแต่เหล็กยึดเหนี่ยวอย่างแน่นหนากว่านิวเคลียสที่เบากว่าทั้งหมด พลังงานจึงไม่สามารถถูกปลดปล่อยออกมาโดยปฏิกิริยาฟิชชั่นได้ ในดาวฤกษ์ที่ค่อนข้างมีอายุและมวลมาก แกนกลางขนาดใหญ่ของดาวจะประกอบด้วยเหล็กเพิ่มมากขึ้น ธาตุที่หนักกว่าในดาวฤกษ์เหล่านี้จะยังคงถูกส่งขึ้นมายังพื้นผิว ก่อให้เกิดวัตถุวิวัฒนาการซึ่งเป็นที่รู้จักกันว่า ดาวฤกษ์วูล์ฟ-ราเยท์ ซึ่งมีลมดาวฤกษ์หนาแน่นเกิดขึ้นบริเวณบรรยากาศชั้นนอก

การยุบตัว

เมื่อถึงขั้นนี้ ดาวฤกษ์มวลปานกลางซึ่งวิวัฒนาการแล้วจะสลัดพื้นผิวชั้นนอกออกมาเป็นเนบิวลาดาวเคราะห์ หากสิ่งที่เหลือจากบรรยากาศชั้นนอกที่ลอยกระจายออกไปมีมวลน้อยกว่า 1.4 เท่าของมวลดวงอาทิตย์ มันจะยุบตัวลงจนกลายเป็นวัตถุขนาดค่อนข้างเล็ก (มีขนาดเท่ากับขนาดของโลก) ซึ่งไม่มีมวลมากพอที่จะมีแรงกดดันเกิดขึ้นไปมากกว่านี้อีก หรือที่รู้จักกันว่า ดาวแคระขาว สสารเสื่อมอิเล็กตรอนภาย ในดาวแคระขาวจะไม่ใช่พลาสม่าอีกต่อไป ถึงแม้ว่าดาวฤกษ์จะหมายความถึงทรงกลมซึ่งประกอบไปด้วยพลาสม่าก็ตาม ในที่สุด ดาวแคระขาวก็จะจางลงจนกลายเป็นดาวแคระดำ หลังจากเวลาผ่านไป
เนบิวลาปู ซากจากซูเปอร์โนวาที่ได้รับการบันทึกครั้งแรกในประวัติศาสตร์ ราว ค.ศ. 1054
ในดาวฤกษ์ที่มีขนาดใหญ่กว่า ปฏิกิริยาฟิวชั่นจะ ยังคงดำเนินต่อไปจนกระทั่งแกนกลางเหล็กมีขนาดใหญ่ขึ้นอย่างมาก (มีมวลมากกว่า 1.4 เท่าของมวลดวงอาทิตย์) จนกระทั่งมันไม่สามารถรองรับมวลอันมหาศาลของตัวมันเองได้ แกนกลางนี้จะยุบตัวลงอย่างเฉียบพลัน เมื่ออิเล็กตรอนเข้าไปอยู่ในโปรตอน ทำให้เกิดนิวตรอนและนิวตริโนในการสลายให้อนุภาคบีตาผกผันหรือการจับยึดอิเล็กตรอน คลื่นกระแทกอันเกิดจากการยุบตัวกะทันหันนี้ได้ทำให้ส่วนที่เหลือของดาวฤกษ์ระเบิดออกเป็นซูเปอร์โนวา ซูเปอร์โนวามีความสว่างมากเสียจนแสงสว่างของมันบดบังแสงจากดาวฤกษ์ทั้งหมดใน ดาราจักรที่ดาวนั้นอยู่ และเมื่อซูเปอร์โนวาเกิดขึ้นในดาราจักรทางช้างเผือก ในประวัติศาสตร์ ซูเปอร์โนวาได้รับการสังเกตโดยผู้สังเกตการณ์ด้วยตาเปล่าว่าเป็น "ดาวฤกษ์ดวงใหม่" ที่ซึ่งไม่เคยเกิดขึ้นมาก่อน
สสารส่วนใหญ่ของดาวฤกษ์จะถูกระเบิดออกจากการระเบิดซูเปอร์โนวา (ทำให้เกิดเนบิวลา อย่างเช่น เนบิวลาปู) และส่วนที่เหลืออยู่จะกลายมาเป็นดาวนิวตรอน (ซึ่งในบางครั้งมีคุณสมบัติชัดเจน อย่างเช่น พัลซาร์ หรือ ดาวระเบิดรังสีเอกซ์) หรือในกรณีของดาวฤกษ์ที่มีขนาดใหญ่ที่สุด (มีขนาดใหญ่มากพอที่การระเบิดออกยังคงเหลือซากที่มีมวลโดยประมาณอย่างน้อย 4 เท่าของมวลดวงอาทิตย์) ดาวฤกษ์เหล่านี้จะกลายไปเป็นหลุมดำ สสารที่อยู่ในดาวนิวตรอนจะอยู่ในสถานะที่เรียกกันว่า สสารเสื่อมนิวตรอน กับรูปแบบของสสารเสื่อมอื่นที่ประหลาดกว่านั้น เช่น สสารควาร์ก เกิดขึ้นที่แกนกลาง ส่วนสถานะของสสารภายในหลุมดำนั้นในปัจจุบันยังไม่เป็นที่เข้าใจเลย
พื้นผิวชั้นนอกส่วนที่ถูกระเบิดออกจากดาวที่ตายแล้วรวมไปถึงธาตุหนักซึ่ง อาจเป็นสารเริ่มต้นระหว่างการก่อตั้งของดาวฤกษ์ดวงใหม่ได้ ธาตุหนักเหล่านี้ทำให้เกิดดาวเคราะห์หิน การไหลอออกจากซูเปอร์โนวาและลมดาวฤกษ์ได้มีส่วนสำคัญในการก่อให้เกิดมวลสาร ระหว่างดาว

ระยะเชิงมุม
          ในการวัดระยะห่างของดวงดาวและเทหวัตถุต่าง ๆ บนท้องฟ้านั้น เราไม่สามารถวัดระยะห่างออกมาเป็นหน่วยเมตร หรือกิโลเมตรได้โดยตรง ถ้าเราไม่ทราบว่าวัตถุเหล่านั้นอยู่ห่างจากเราเป็นระยะทางเท่าไร ดังนั้นการวัดระยะทางดาราศาสตร์ จึงนิยมวัดออกมาเป็น ระยะเชิงมุม (Angular distance) ตัวอย่างเช่น เราบอกว่า ดาว A อยู่ห่างจาก ดาว B เป็นระยะทาง 5 องศา หรือบอกว่าดวงจันทร์มีขนาดกี่องศา ซึ่งเป็นการบอกระยะห่างและขนาดเป็นเชิงมุมทั้งสิ้น
ภาพที่ 1  แสดงการวัดระยะเชิงมุม
          ระยะเชิงมุมที่วัดได้นั้น เป็นระยะห่างที่ปรากฏให้เห็นเท่านั้น ทว่าในความเป็นจริง ดาว A และดาว B อาจอยู่ห่างจากเราไม่เท่ากัน หรืออาจจะอยู่ห่างจากเราเป็นระยะที่เท่ากันจริง ๆ ก็ได้ เนื่องจากดาวที่เราเห็นในท้องฟ้านั้นเราเห็นเพียง 2 มิติเท่านั้น ส่วนมิติความลึกนั้นเราไม่สามารถสังเกตได้
การวัดระยะเชิงมุมอย่างง่าย

          ในการวัดระยะเชิงมุมถ้าต้องการค่าที่ละเอียดและมีความแม่นยำ จะต้องใช้อุปกรณ์ที่มีความซับซ้อนมากในการวัด แต่ถ้าต้องการเพียงค่าโดยประมาณ เราสามารถวัดระยะเชิงมุมได้โดยใช้เพียงมือและนิ้วของเราเองเท่านั้น เช่น ถ้าเรากางมือชูนิ้วโป้งและนิ้วก้อย โดยเหยียดแขนให้สุด ความกว้างของนิ้วทั้งสองเทียบกับมุมบนท้องฟ้า จะได้มุมประมาณ 18 องศา ถ้าดาวสองดวงอยู่ห่างกันด้วยความกว้างนี้แสดงว่า ดาวทั้งสองอยู่ห่างกัน 18 องศาด้วย 

 

 ในคืนที่มีดวงจันทร์เต็มดวง ให้เราลองกำมือชูนิ้วก้อยและเหยียดแขนออกไปให้สุด ทาบนิ้วก้อยกับดวงจันทร์ เราจะพบว่านิ้วก้อยของเราจะบังดวงจันทร์ได้พอดี เราจึงบอกได้ว่าดวงจันทร์มี "ขนาดเชิงมุม" (Angular Diameter) เท่ากับ 1/2 องศา โดยขนาดเชิงมุมก็คือ ระยะเชิงมุมที่วัดระหว่างขอบของดวงจันทร์นั้นเอง ขนาดเชิงมุมของวัตถุขึ้นอยู่กับระยะห่างของวัตถุกับผู้สังเกต และขนาดเส้นผ่านศูนย์กลางจริงของวัตถุนั้น

ภาพที่ 3  ขนาดเชิงมุม
          ยกตัวอย่าง: ลองจินตนาการภาพลูกบอลวางอยู่ห่างจากเรา 1 เมตร ให้เราลองวัดขนาดเชิงมุมของลูกบอล จากนั้นเลื่อนลูกบอลให้ไกลออกไปเป็นระยะทาง 3 เท่า ขนาดเชิงมุมจะลดลงเป็น 1 ใน 3 ของขนาดที่วัดได้ก่อนหน้านี้
ดังนั้น
"ค่าขนาดเชิงมุม" คือ อัตราส่วนของขนาดจริง ต่อ ระยะห่างของวัตถุ


การกำหนดทิศ

         เมื่อเราอยู่กลางแจ้งและมองไปรอบ ๆ ตัว เราจะเห็นพื้นโลกทอดไกลออกไปจรดขอบฟ้าเป็นรูปครึ่งวงกลม เราเรียกเส้นตัดระหว่างพื้นโลกกับขอบฟ้าว่า
เส้นขอบฟ้า (Horizon)   เส้นขอบฟ้าเป็นเส้นวงกลมล้อมรอบตัวในแนวราบ เมื่อสังเกตการเคลื่อนที่ของดวงอาทิตย์ในเวลาเช้า จะเห็นดวงอาทิตย์โผล่ขึ้นมาจากขอบฟ้าด้านหนึ่ง เรียกว่า ทิศตะวันออก และดวงอาทิตย์ จะเคลื่อนที่ขึ้นสูงที่สุดในเวลาประมาณเที่ยงวัน จากนั้นดวงอาทิตย์จะเคลื่อนต่ำลงกระทั่งตกลับขอบฟ้าอีกด้านหนึ่ง เรียกว่า ทิศตะวันตก   การขึ้น – ตกของดวงอาทิตย์ เกิดจากการหมุนรอบตัวเองของโลกตามแกนเหนือ - ใต้ ดังนั้นการกำหนดทิศทางบนโลก จึงแบ่งออกเป็น 4 ทิศหลัก คือ ทิศตะวันออก (East) ทิศตะวันตก (West) ทิศเหนือ (North) และทิศใต้ (South)  โดยทิศทั้งสี่มีความสัมพันธ์กันดังนี้
  
ภาพที่ 1 เมื่อหันหน้าไปทางเหนือ
ด้านหลังของเราจะเป็นทิศใต้
แขนซ้ายจะชี้ไปทางทิศตะวันตก
แขนขวาจะชี้ไปทางทิศตะวันออก


 
ภาพที่ 2 เมื่อหันหน้าไปทางทิศตะวันตก

ด้านหลังของเราจะเป็นทิศตะวันออก
แขนซ้ายจะชี้ไปทางทิศใต้
แขนขวาจะชี้ไปทางทิศเหนือ

  

 ภาพที่ 3 จุดเหนือศีรษะ

จุดสูงที่สุดบนฟ้าจะอยู่เหนือศีรษะพอดี เรียกว่า
จุดเหนือศีรษะ  (Zenith)

จุดเหนือศีรษะทำมุมกับผู้สังเกตการณ์ และขอบฟ้าทุก ๆ ด้าน เป็นมุมฉาก (90°) พอดี

การบอกตำแหน่งดาว

ภาพที่ 4  มุมอาซิมุท และมุมเงย
          ในการบอกตำแหน่งเทห์วัตถุท้องฟ้าอย่างง่าย ซึ่งเรียกว่า ระบบ "อัลตาซิมุท" (Alt-azimuth) นั้น  เราบอกด้วยค่ามุมสองชนิด คือ มุมอาซิมุท และมุมเงย
               
มุมอาซิมุท (Azimuth) เป็นมุมใน แนวราบ นับจากทิศเหนือ ในทิศทางตามเข็มนาฬิกา ไปยังทิศตะวันออก ทิศใต้ ทิศตะวันตก และกลับมาทิศเหนืออีกครั้งหนึ่ง มีค่าระหว่าง 0 - 360 องศา
               
มุมเงย (Altitude) เป็นมุมในแนวตั้ง นับจากเส้นขอบฟ้าขึ้นไปสู่จุดเหนือศีรษะ มีค่าระหว่าง 0 - 90 องศา
          จากตัวอย่างในภาพที่ 4 แสดงให้เห็นว่า ตำแหน่งของดาว มีค่ามุมอาซิมุธ 250°  และมีค่ามุมเงย 50°

ไม่มีความคิดเห็น:

แสดงความคิดเห็น

facebook